Referências Bibliográficas

- Beirute, R. M.; Flumerfelt, R. W. Mechanics of the Displacement Process of Drilling Muds by Cement Slurries Using an Accurate Rheological Model. Society of Petroleum Engineers, (6801), 1977.
- [2] Bird, R. B.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric Liquids, volumen 1. John Wiley and Sons Inc., USA, 2nd edition, 1987.
- [3] Brand, F.; Peixinho, J.; Nouar, C. A Quantitative Investigation of the Laminar - Turbulent Transition Application to Efficient Mud Cleaning-. Society of Petroleum Engineers, (71375), 2001.
- [4] Bretherton, F. P. The Motion of Long Bubbles in Tubes. Journal of Fluid Mechanics, 10:166–188, 1960.
- [5] Noveon, Inc. Carbopol Polymeric Rheology Modifiers. www.homecare.noveoninc.com/presentation/carbopol2, :, .
- [6] Carney, L. L. Cement Spacer Fluid. Society of Petroleum Engineers, (4784), 1974.
- [7] Fairbrother, F.; Stubbs, A. E. Studies in Electroendosmosis. Part IV. The Bubble-Tube Method of Measurements. Journal of Chemical Society, 1:527–529, 1935.
- [8] FLUENT, Inc. FLUENT 6.1 Documentation User's Guide. , :, 2003.
- [9] Frigaard, I. A.; Allouche, M.; Gabard, C. Setting Rheological Targets for Chemical Solutions in Mud Removal and Cement Design. Society of Petroleum Engineers, (64998), 2001.
- [10] Bittleston, S. H.; Ferguson, J.; Frigaard, I. A. Mud Removal and Cement Placement During Primary Cementing of an Oil Well -

Laminar non-Newtonian Displacements in an Eccentric Annular Hele-Shaw Cell. Journal of Engineering Mathematics, 43:229–253, 2002.

- [11] Frigaard, I. A.; Pelipenko, S. Effective and Ineffective Strategies for Mud Removal and Cement Slurry Design. Society of Petroleum Engineers, (80999), 2003.
- [12] FLUENT, Inc. GAMBIT 2.2 User's Guide. , :, 2003.
- [13] Graves, W. G.; Collins, R. E. Non-Newtonian Fluid Displacement in an Irregular Annulus of Axial Symmetry. Journal of Non-Newtonian Fluid Mechanics, 8:43–58, 1981.
- [14] Guillot, D.; Couturier, M.; Hendriks, H.; Callet, F. Design Rules and Associated Spacer Properties for Optimal Mud Removal in Eccentric Annuli. Society of Petroleum Engineers, (21594), 1990.
- [15] Haut, R. C. Applications of a Computer Simulator to Primary Cementing. Society of Petroleum Engineers, (7588), 1978.
- [16] Haut, R. C.; Crook, R. J. Primary Cementing: The Mud Displacement Process. Society of Petroleum Engineers, (8253), 1979.
- [17] Haut, R. C.; Crook, R. J. Laboratory Investigation of Lightweight, Low-Viscosity Cementing Spacer Fluids. Society of Petroleum Engineers, (10305), 1981.
- [18] Hirt, C. W.; Nichols, B. D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 39:201–225, 1979.
- [19] Jakobsen, J.; Sterri, N.; Saasen, A.; Aas, B. Displacements in Eccentric Annuli During Primary Cementing in Deviated Wells. Society of Petroleum Engineers, (21686), 1991.
- [20] Kelessidis, V. C.; Guillot, D. J.; Rafferty, R.; Borriell, G.; Merlo, A. Field Data Demonstrate Improved Mud Removal Techniques Lead to Successful Cement Jobs. Society of Petroleum Engineers, (26982), 1995.
- [21] Lockyear, C. F.; Hibbert, A. P. Integrated Primary Cementing Study Defines Key Factors for Field Sucess. Society of Petroleum Engineers, (18376), 1989.

- [22] Luo, Y.; Peden, J. M. Flow of Drilling Fluids Through Eccentric Annuli-. Society of Petroleum Engineers, (16692), 1987.
- [23] Martin, M.; Latil, M.; Vetter, P. Mud Displacement by Slurry During Primary Cementing Jobs: Predicting Optimum Conditions. Society of Petroleum Engineers, (7590), 1978.
- [24] Patankar, S. V. Numerical Heat Transfer and Fluid Flow, volumen. Hemisphere Publishing Corporation, USA, edition, 1980.
- [25] Rohsenow, W. M.; Harnett, J. P.; Cho, Y. I. Handbook of Heat and Transfer, volumen. McGraw-Hill, EUA, 3rd edition, 1998.
- [26] Sauer, C. W. Mud Displacement During Cementing: A State of the Art. Society of Petroleum Engineers, (14197), 1987.
- [27] Soo, H.; Radke, C. J. The Flow Mechanism of Dilute, Stable Emulsions in Porous Media. Industrial and Enginnering Chemistry Fundamentals, (23), 1984.
- [28] Szabo, P.; Hassager, O. Displacement of one Newtonian Fluid by Another: Density Effects in an Axial Annular Flow. International Journal of Multiphase Flow, 23.1:113–129, 1997.
- [29] Taylor, G. I. The Motion of Long Bubbles in Tubes. Journal of Fluid Mechanics, 10:161–165, 1960.
- [30] Tehrani, A.; Ferguson, J.; Bittleston, S. H. Laminar Displacement in Annuli: A Combined Experimental and Theoretical Study. Society of Petroleum Engineers, (24569), 1992.

A Apêndice 1 - Método dos Volumes Finitos

O FLUENT utiliza uma técnica baseada em dividir o domínio de integração em volumes de controle, tendo sempre, internamente, um ponto nodal. No caso de malha bi-dimensional os volumes de controle podem ser representados pela figura A.1. No caso de malha tri-dimensional uma nova direção \hat{z} deve ser criada, perpendicular ao plano xy.

Figura A.1: Volume de Controle

Nessa técnica, integram-se as equações governantes (equações diferenciais de conservação) em cada volume de controle, produzindo então, equações discretas que conservam cada uma das grandezas num volume de controle base.

Após a integração das equações nos volumes de controle, cria-se uma função de interpolação para uma dada variável entre dois pontos nodais. A equação geral de conservação utilizada pelo código do FLUENT é, na forma diferencial:

$$\frac{\partial(\rho\phi)}{\partial t} + \nabla \cdot (\rho \vec{v}\phi) = \nabla \cdot (\Gamma \nabla \phi) + S \tag{A-1}$$

A equação A-1 se reduz a da continuidade se: $\phi = 1$, $\Gamma = 0$ e S = 0. Nas equações de conservação de quantidade de movimento, ϕ representa os componentes da velocidade e Γ a função viscosidade, que nesse trabalho foi definida como η . O termo fonte S incorpora os termos gerados pelo fato da viscosidade variar com a taxa de deformação.

A.0.1 Discretização

A equação geral de conservação A-1, ao ser discretizada, tendo como notação aquela mostrada na figura A.1, pode ser representada pela seguinte equação:

$$a_P\phi_P = a_E\phi_E + a_W\phi_W + a_N\phi_N + a_T\phi_T + a_B\phi_B + B \tag{A-2}$$

Na expressão acima, a_P é o coeficiente da variável ϕ no ponto nodal principal; a_E , a_W , a_N , a_S , a_T , a_B , são os coeficientes dos pontos nodais vizinhos a leste, oeste, norte, sul, frente, fundo, respectivamente. A parcela de fonte da variável ϕ é representado pela letra B.

Tais coeficientes são dados por:

$$a_E = D_e \boldsymbol{A}(|\boldsymbol{P_e}|) + [0, -F_e]$$
(A-3)

$$a_W = D_w \boldsymbol{A}(|\boldsymbol{P}_w|) + [0, F_w]$$
 (A-4)

$$a_N = D_n \boldsymbol{A}(|\boldsymbol{P_n}|) + [0, -F_n]$$
(A-5)

$$a_S = D_s \boldsymbol{A}(|\boldsymbol{P_s}|) + [0, F_s]$$
(A-6)

$$a_T = D_t \boldsymbol{A}(|\boldsymbol{P_t}|) + [0, -F_t]$$
(A-7)

$$a_B = D_b \boldsymbol{A}(|\boldsymbol{P_b}|) + [0, F_b]$$
(A-8)

$$a_P = \sum a_{nb} - S_p \triangle \forall \tag{A-9}$$

Onde, [0, F] representa o máximo valor entre 0 e F. Sub-índices em letras minúsculas significam propriedades sendo avaliadas nas faces do volume de controle.

 ${\cal F}$ é o fluxo de massa através de cada face definido, no caso da face leste, por:

$$F_e \equiv \rho v|_e A_e \tag{A-10}$$

P é o número de *Peclet* definido, no caso da face leste, por:

$$P_e \equiv \frac{F_e}{D_e} \tag{A-11}$$

Dé a condutância de difusão através de cada face, definida, no caso da face leste, por:

$$D_e \equiv \frac{\Gamma_e}{\delta x_e} A_e \tag{A-12}$$

Nas equações A-10 e A-12, A_e é a área da face leste que o fluxo cruza.

A função \boldsymbol{A} é definida de acordo com a escolha da curva que estima a função ϕ entre dois pontos nodais adjacentes. No caso de problemas convectivos, como esse, recomenda-se o uso da curva *power-law*, proposta por Patankar [24] em 1980, que interpola a ϕ baseado numa aproximação exponencial, mostrada abaixo:

$$\boldsymbol{A}(|\boldsymbol{P}|) = \begin{bmatrix} 0, (1-0,1|\boldsymbol{P}|)^5 \end{bmatrix}$$
(A-13)

Devido à não linearidade do problema, é necessário controlar a convergência da variável ϕ . Para isso, foram utilizados **fatores de subrelaxação** que reduzem a variação de ϕ a cada iteração. Assim, pode-se representar a atuação desses fatores pela expressão A-14, onde o novo valor de ϕ depende do valor antigo ϕ_o , do fator de sub-relaxação β e a variação computada $\Delta \phi$.

$$a_p \phi_p = \sum a_{nb} \phi_{nb} + b + (1 - \beta) (\frac{a_p}{\beta}) \phi_p^*$$
 (A-14)

Nesse trabalho foram usados os seguintes valores para β :

– Pressão $\Rightarrow 0,3$

- Densidade
$$\Rightarrow 0,5$$

– Quantidade de movimento (velocidade) $\Rightarrow 0.5$

- Forças de corpo $\Rightarrow 0.5$

– Fração volumétrica $\Rightarrow 0,2$

A.0.2 Equação de Correção da Pressão

Antes das iterações iniciarem, é preciso fornecer as propriedades do fluido no momento da inicialização do programa. Utilizando valores iniciais de pressão e vazão mássica, as equações de conservação de quantidade de movimento são resolvidas fornecendo o campo de velocidade. Desde que a velocidade não satisfaça a equação da continuidade, uma equação do tipo *Poisson* para a correção da pressão é derivada da equação da continuidade e das equações de quantidade de movimento linearizadas.

A equação de correção da pressão é resolvida a fim de obter as correções necessárias para que o fluxo de massa, o campo de velocidade e a própria pressão satisfaçam a equação da continuidade.

$$a_e v_{x,e}^* = \sum a_{nb} v_{x,nb}^* + b + A_e (p_P^* - p_E^*)$$
 (A-15)

$$a_e v_{x,e} = \sum a_{nb} v_{x,nb} + b + A_e (p_P - p_E)$$
 (A-16)

Nas equações acima, os termos $v_{x,e}^* e p^*$ são estimativas iniciais, que em geral não satisfazem a equação da continunidade. O termo *b* é a contribuição da parte constante do termo fonte S_c em $S = S_c + S_p \phi$. O campo de pressão deve ser portanto alterado, aplicando-se uma correção da forma:

$$p = p^* + p' \tag{A-17}$$

Onde p' é a correção da pressão.

A.0.3 Equação de Correção da Velocidade

Assim como foi escrita uma correção para a pressão, faz-se o mesmo para a velocidade.

$$v = v^* + v' \tag{A-18}$$

Sabendo que a equação do campo de pressão correto é dado por A-16, podemos subtrair A-15 de A-16, gerando assim:

$$a_e(v_{x,e} - v_{x,e}^*) = \sum a_{nb}v'_{x,nb} + A_e(p'_P - p'_E)$$
(A-19)

Para o acoplamento pressão-velocidade foi usado o algoritmo SIMPLE. O termo $\sum a_{nb}v'_{x,nb}$ da expressão A-19 é omitido, portanto temos:

$$v_{x,e} = v_{x,e}^* + \frac{A_e}{a_e} (p'_P - p'_E)$$
(A-20)

analogamente, para as direções $\hat{y} \in \hat{z}$:

$$v_{y,n} = v_{y,n}^* + \frac{A_n}{a_n} (p'_P - p'_N)$$
(A-21)

$$v_{z,t} = v_{z,t}^* + \frac{A_t}{a_t} (p'_P - p'_T)$$
(A-22)

O próximo passo é resolver a equação de fração volumétrica. Após resolver cada uma dessas equações, temos o que corresponde a uma iteração. Nesse momento verifica-se o resíduo.

Figura A.2: Loop Iterativo

A.0.4 Resíduos

No final de cada iteração, a soma dos resíduos de cada uma das variáveis é computada. O resíduo das iterações, no caso do método de solução segregado, é o balanço da equação A-23 somada em todas as células.

$$R^{\phi} = \sum_{celulas} \left| \sum_{nb} a_{nb} \phi_{nb} + b - a_P \phi_P \right|$$
 (A-23)

Para normalizar o resíduo é utilizado um fator de escala. Este procedimento facilita o julgamento se há boa ou má convergência da solução. Assim a equação A-1 se torna:

$$R^{\phi} = \frac{\sum_{celulas} \left| \sum_{nb} a_{nb} \phi_{nb} + b - a_P \phi_P \right|}{\sum_{celulas} \left| a_P \phi_P \right|}$$
(A-24)

Nas equações de conservação de quantidade de movimento, por exemplo, o termo no denominador $a_P \phi_P$ é substituído por $a_P v_P$, onde v_P é a magnitude de velocidade na célula P.

Na equação de continuidade o resíduo é definido como a soma da taxa de massa criada em todas as células. O resíduo com fator de escala para a continuidade é dado pela expressão A-25 que divide o resíduo em cada iteração pelo maior valor de resíduo das cinco primeiras iterações.

$$R^{C} = \frac{R^{c}_{iteracao}N}{R^{c}_{iteracao}5} \tag{A-25}$$

Nesse trabalho foi definido que para haver avanço no tempo, ou seja convergência da solução, seria necessário que o resíduo fosse $R \leq 10^{-3}$ para as equações de conservação de quantidade de movimento e continuidade.

Apêndice 2 - Ajuste de Curva

Β

Para fazer o ajuste de curva foi adotado a seguinte procedimento: Foram criadas no Microsoft Excel quatro colunas, as duas primeiras com os dados experimentais do reômetro (taxa de cisalhamento e viscosidade); na terceira, células com a fórmula do modelo reológico que se quer ajustar; e na quarta o erro relativo ε .

$$\varepsilon = \frac{|\eta_{reometro} - \eta_{ajuste}|}{\eta_{reometro}} \tag{B-1}$$

axa de Cisalhamento	Viscosidade - Reômetro	Managed day day Alizada	X427.	
0 1000	A THE REPORT OF A THE REPORT OF A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION	viscosidade - Ajuste	3	Parametros
0.1000	188.88	188.82	0.000	Tau0 = 18.9
0.1778	104.57	107.06	0.024	k = 1.5
0.3162	58.972	60.911	0.033	n = 0.8
0.5623	34.616	34.812	0.006	
1.0000	21.449	20.020	0.067	
1.7783	13.558	11.611	0.144	
3.1623	9.7644	6.8092	0.303	
5.6234	7.2831	4.0516	0.444	
10.000	3.4667	2.4551	0.292	
17.783	1.7217	1.5210	0.117	
31.623	0.9899	0.9668	0.023	
56.234	0.6415	0.6323	0.014	
100.00	0.4262	0.4259	0.001	
177.83	0.2954	0.2954	0.000	
316.23	0.2136	0.2105	0.014	
562.34	0.1562	0.1536	0.016	
1000.0	0.1180	0.1144	0.030	
			0.090	Média

Figura B.1: Modelo de procedimento para ajuste de dados

Com a ferramenta "Atingir Meta" do Microsoft Excel, foi forçada para a célula que contém a soma dos erros relativos ε , em relação a cada ponto, o valor zero. Os parâmetros reológicos, no caso do modelo de *Herschel-Bulkley*, são as variáveis que serão calculadas, uma de cada vez, para que a célula que contém a soma dos ε seja mínimo. Repete-se o procedimento para cada um dos parâmetros do modelo até que os mesmos não mudem mais.